
MATHEMATICS OF COMPUTATION 
VOLUME 53, NUMBER 187 
JULY 1989, PAGES 191-201 

Numerical Solution of Some 
Classical Differential-Difference Equations* 

By George Marsaglia, Arif Zaman, and John C. W. Marsaglia 

Abstract. For differential-difference equations, we provide a method that gives nu- 
merical solutions accurate to hundreds or even thousands of digits. We illustrate with 
numerical solutions to three classical problems. With a few exceptions, previous claims 
of extended accuracy for these problems are found to be wrong. 

1. Introduction. This article describes a method for evaluating functions de- 
fined by differential-difference equations. It concentrates on three specific functions 
that, because they have been discussed in scores of papers going back over fifty 
years, may be considered classical. Subject to various initial conditions, with a 
prime indicating differentiation, the defining relations for the three functions are: 

Renyi's function: [(x - 1)f(x)]' = 2f(x - 1) 
Dickman's function: xv'(x) = - v(x - 1) 
Buchstab's function: [xw(x)]' = w(x - 1) 

We will describe a method that provides simple and very accurate evaluation of 
these functions, given their forms over an initial interval. The method then builds 
up the function over successive intervals-as do all the published methods, but 
rather than use previous methods, involving numerical integration, we suggest a 
series method that seems simpler and is much more accurate. 

2. Previous Results. Numerous authors have reported numerical values for 
solutions of the above equations. As far as can be determined, all were based 
on numerical integration. Values for Renyi's function were published by Manion 
[13] and by Blaisdell and Solomon [4]. Davenport and Erd6s [5] gave a few values 
of Dickman's function, and extensive numerical integrations were carried out by 
Bellman and Kotkin [1], van de Lune and Wattel [12] and by Lal and Gillard [11], 
who also carried out extensive numerical integrations of Buchstab's function. 

Except for van de Lune and Wattel, who exploited the convexity of Dickman's 
function and gave a masterly analysis of their numerical integration, other numerical 
solutions have been found to have accumulated error far in excess of their authors' 
claims. The Bellman and Kotkin [1] results are unacceptable beyond x = 9, Blais- 
dell and Solomon's [4] are bad beyond x = 13 or so, and the results claimed in Lal 
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and Gillard [10] are far from correct beyond about x = 25. With our new method, 

we have been able to provide numerical results with hundreds of places of accuracy 
out to x = 500, using a PC AT. We will conunent on the extent and accuracy 
of previous results in sections devoted to each of the three differential-difference 
equations. 

The frequency and the magnitude of errors in published solutions to these 
differential-difference equations raises serious doubts about the suitability of the 
numerical integration methods used-usually Romberg or some other application 
of Richardson extrapolation. Error analysis based on the magnitude of high-order 
derivatives may not be suitable for equations whose solutions are functions that are 
generalized splines, having only a limited number of derivatives at the knots. 

3. Ideas Behind the New Method. Differential-difference equations mav be 

solved by converting them to equivalent integral-difference equations. For example, 
Renyi's function may be described by the conditions: 

1 2 for 1 < x < 2, 

f(x)- 2 x-1 (y)dy for 2 < x. 

The solution is a generalized spline function with knots at 1, 2, 3, ... It is contin- 
uous at x = 1. It has a continuous first, but no second, derivative at x = 2; it has a 
continuous second, but no third, derivative at x = 3, and so on. Between knots, the 

function f is analytic, expressible as a power series, infinitely differentiable. The 

coefficients of successive power series change over each interval, but the defining 
conditions for f allow the coefficients for a given interval to be simply expressed in 

terms of those for the previous interval. 
The problem is to choose the form of each power series. If the expansion 

is about the left end point of the interval, convergence is too slow at the right 
end point. But expansions about the midpoint of each interval provide excellent 

convergence-equal to that arising from Chebyshev expansions (our first approach), 
and much simpler. We now give details, with a section for each of the three classical 
differential-difference equations converted to an integral-difference equation. 

4. Renyi's Function. Here we have 

( 2 for 1 <x <2, 
(l) fx= 2 (y) dy for 2 < x. 
This function arises from a random "parking" problem, posed by Schmetterer 

and solved by Renyi [15]. Let f (x) = M(x) + 1 with M(x) the mean number 

of random unit intervals, "cars", placed without overlap on a "street" of length x. 

The first car occupies the interval (u, u + 1), with u chosen uniformly from 0 to 

x - 1. This leaves two new, shorter, "streets" which may be independently covered 

with random nonoverlapping cars, and the process continues until only substreets 
of lengths less than 1 remain. 

With M(x) the expected number of cars placed, a divide-and-conquer approach 
allows one to write 

M(x=1?fx1 M(u) +M(x-u-1) 2 [X1 
M(x) = 1 +du = 1 + ~ ~M(u) du, 

x - 1 x - 1 
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and thus, with f (x) = M(x) + 1, 

f(X+1) = -jf(y) dy. 

For 1 < x < 2, only one car may be parked, so that M(x) = 1 and f(x) = 2 
for 1 < x < 2. (Alternative initial conditions arise from putting M(x) = 0 for 
0 < x < 1, streets which can take no cars, leading to M(x) = 1 and f (x) = 2 for 
1 < x < 2.) 

Using the Laplace transform of M(x), Renyi showed that M(x) = cx + c - 1 + 
O(x-m), or in current notation, f (x) = cx + c + O(x-m), with 

c =f exp(.fp- 12 du) dt. 

Subsequently, Dvoretsky and Robbins [7] gave more precise asymptotic behavior: 

f(x)=cxc+O ((2e x-3/2 
f~~ ~ (X = )x ) 

Evaluation of the constant c, which gives the asymptotic density of random 
packing on the line, has been the object of numerous research efforts. It has been 
conjectured that the asymptotic density of the random packing of unit squares in 
a big square is c2, c3 for unit cubes in a big cube, and so on; see [4]. One of us (G. 
Marsaglia, in 1971) computed c to 31 places, using an early version of the method 
of this article, with Chebyshev series. 

In a 1970 paper, Blaisdell and Solomon [4] reported that the best estimate of c 
to that time was that of Manion [13]: c = .74759. They integrated Renyi's equation 
numerically to x = 15 and made the explicit claim: 

.74759 79202 53397 8 < c < .74759 79202 53398 1 (?) 

The last four digits are wrong; rather than between 3978 and 3981 they should be 
4114. 

Lal and Gillard [10] computed c to 19 places (correctly), using numerical inte- 
gration of the integral-difference equation. They concluded with a note added in 
proof, claiming recent computations of Lal and Tiller gave c to 44 places: 

c = .74759 79202 53411 43517 87309 43636 52421 02617 2439 (?) 

That representation of c is only accurate to 27 places; we..have indicated the incor- 
rect digits in bold face. 

In fact, the method described here shows the value of c to 100 places to be: 

c = .74759 79202 53411 43517 87309 43830 17817 30247 86264 07422 

83766 04229 16342 51678 81602 95440 43124 30850 36931 41112 (!) 

and, should anyone want it, we have c to 1000 places. Of course there is little value 
in such great precision in c itself, but there is considerable value in being able to 
provide great precision in early and intermediate stages of the recursive calculations 
necessary to solve differential- or integral-difference equations of the type discussed 
here. 
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To provide an independent evaluation and check of the 100 digits in c above, 
we have calculated c directly by Renyi's integral representation. Details are in the 
Addendum. 

We now turn to details of our method for evaluating Renyi's function f. If, for 
given integer n, f(n+t) is known for 0 < t < 1, then f(n+1+t) may be determined 
from this version of relation (1): 

(2) f (n + 1+t) nf(n +1) +2 f~f (n +y)dy 0 < t< 1. 
n+t I 

In particular, if f(n + t) is a known power series in t that converges for 0 < t < 1 
then f(n + 1 + t) will have a corresponding representation as a power series in t, 
with convergence for 0 < t < 1. The coefficients of the new power series may be 
determined by integrating the series representation of f(n + y) in the right side of 
relation (2). 

This is probably the simplest way to build up representations of f(x) over suc- 
cessive intervals: 1 to 2, 2 to 3, 3 to 4, etc., but that method requires evaluation 
of power series in t at t = 1, with slow convergence. A more accurate method 
assumes power series about the midpoints of the intervals, leading to simple and 
very accurate evaluation of functions defined by relations such as the one in (1). 

Accordingly, assume that, for given n, we have a representation 

2 2~~~~~ (3) f\(n-+F2-+ ZJ-=aO-+ a1z-+Fa2z +az+ 

that converges for -1 < z < 1, and we seek a corresponding series 

(4) f (n+1+ + Z) =bo+blz+b2z2 + b3z3 + 

Relation (2) may be put in the form 

(5) n+ 2 + ) ( n+1+ 2Z+ ) =nf(n+l)+f f(n+.1+ 1 v) dv. 

Then the coefficients bo, b1,... are related to ao, a,... by 

(2n+ 1 +z)(bo +biz+b2z2 +...) 

=2nf(n + 1) + 2[aov + alv2/2 + a2v3/3 + .. .]vz. 

Thus, since f(n + 1) = ao + a, + a2 + * - *, 

(6) bo= 2 1[(n + 1)ao + (n-1/2)al + (n + 1/3)a2 + ] 

and 

(7) bi = [2ai 1/i-bi_ ]/(2n+ 1) for i = 1,2,3,. 

The resulting series (4) provides extended precision evaluation of f(x) over the 
interval in question. The series is alternating (after the first few terms), and its tail 
is bounded by a geometric series. Thus with an extended precision package such as 
one we have written for a PC AT, with precision limited only by memory capacity, 
typically providing the binary equivalent of over a thousand decimal digits we 
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are able to evaluate f(x) with great accuracy. Such accuracy requires that the 
bo, bi Ib2, ... be at least as accurate, of course, but that is readily accomplished: 
bl, b2,... are all exact, rational multiples of bo, which is itself the sum of a well- 
behaved series. If we evaluate bo to, say, 1000 places, then we may evaluate any 
f (x) in the interval in question to similar accuracy. 

We have used recursive developments of the successive power series to get rep- 
resentations of f for intervals n < x < n + 1 out to x = 500. We are thus able to 
get not only particular values of f(x) but the shape of the entire function over that 
range. The function f(x), shown in Figure la, oscillates around cx + c, and very 
quickly becomes indistinguishable from it. Since the difference fA (x) = f (x) -cx - c 
looks much like an exponentially damped harmonic function, a graph of xoXf? (x) 
is displayed in Figure lc, with the constant a chosen to blow up the shape by ap- 
proximately the right amount. To further examine the sinusoidal behavior, let #S 
designate the cardinality of the set S. Then define the function 

z(y) = #{x: fA(x) = 0 for x < y} for all fA(y) = 0, 

i.e., whenever y is a zero of fA the function z(y) is the number of previous zeros 
(including the current one). Extend the definition of z(y) to the rest of the points 
by linear interpolation between the two nearest defined points. If the zeros of fA 
were equally spaced, z should be a linear function. As the graph of z - 1.175y in 
Figure lf shows, the period of the sine waves is very slowly but steadily decreasing, 
with the value of nearly 2.35 for values of y up to 200. Finally, the function 
f*(x) = f?(x)/sin(irz(x)) represents an approximation to the envelope of fA(x), 
and since it does not have an oscillating sign, one can compute lnf*(x)/xlnx, 
displayed in Figure le, which indicates that the envelope behaves asymptotically 
as xl for some appropriate a near 0.95. 

Perhaps overlooking the oscillatory behavior of f(x), as well as its lack of high- 
order derivatives, caused Blaisdell and Solomon r4] and Lal and Gillard [10] to put 
too much faith in the accuracy of their numerical integrations. 

5. Dickman's Function. Call this function v(x). It is defined by the differen- 
tial-difference equation 

(8) v(x) = 1 for 0 < x < 1 and xv'(x) =-v(x- 1) for x > 1 . 

Dickman [6] gave a heuristic argument for the role of v(x) in analytic number theory. 
Let n be a large integer and let p be the largest prime factor of an integer m chosen 
at random from 1 to n. Then 

lim Pr(p < nl/x) = v(x). 
n--oo 

For example, if n is an integer near 10400 and p the largest prime factor of an integer 
chosen at random from 1 to n, then Pr(p < 10200) a v(2), Pr(p < 10100) t v(4) 
and Pr(p < 1010) ; v(40). 

The function v(x) is useful in assessing the speed of algorithms for factoring large 
integers. It was also used by Davenport and Erdos [5] to provide the frequency of 
residues of a large prime which are kth powers of other residues. For that, the 
solution of v(x) = 1/k is required. (Should anyone want them, we have solutions 
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for k = 2,3, ..., 2000, which may be used to assess the accuracy of the asymptotic 
results proved in [5].) 

Dickman's heuristic result has been made rigorous and extended in numerous 
papers, for example, Ramaswami [14], Norton [16], Davenport and Erd6s [5]. Knuth 
[9, pp. 367-368] gives a nice discussion, using the function F(t) = v(1/t). Numerical 
evaluation of v(x) was treated in papers by Bellman and Kotkin [1], van de Lune 
and Wattel [12] and Lal and Gillard [11]. 

Since v(x) is convex and rapidly goes to zero, numerical integration should 
be more effective for it than for the oscillatory solutions to Renyi's or Buch- 
stab's equations. van de Lune and Wattel solved it with great accuracy, as did 
Lal and Gillard. As mentioned previously, Bellman and Kotkin's numerical so- 
lution of Dickman's equation gave unsatisfactory results: they gave, for exam- 
ple, v(10),v(15),v(20) as 0.458,0.202,0.149, all times 10-8; the true values are 
0.27701 x 10-10,0.75899 x 10-18,0.24617 x 10-28. 

We may evaluate v(x) quite easily and very accurately by the series method 
described above. It is readily verified that, with v(t) = 1 for 0 < t < 1, 

~t v(n+ y) 
v(n +1+ t) = v(n+l1) - 

/;Vn + V)+ dy 

satisfies condition (8) defining v. To get series expansions about the midpoints of 
intervals, write 

(9) ~~~~1 1\(z\v(fl 21+ 2+1Y)J 
(9) v(n + 1 + 2 + 2 Z) =v(n + 1) -| (2n3+ 2- dy. 2 1~ 2n+3+y 

Differentiating this relation and equating powers of z provides simple expressions 
for bi,b2, ... 

bi and bi = - t(1+ )1for i-=2,3, .. . 
2n +3 i(2n +3) 

To get bo we express the integrand in (9) as a power series in y, getting 

1 1 fz 
v(n+l+ 1 + - z) =v(n+1)- (Co+clY+c2y2+...)dy 

with co = ao/(2n + 3) and ci = (ai - ci-.)/(2n + 3) for i = 1, 2,3,... Then 

bo = 2 [ao(1 + co/1) + a,(1-cj/2) + a2(1 + c2/3) +* ] 
2n +31 

The sum for bo may be computed without declaring an array for the c's, since they 
may be built up recursively and are not needed other than for evaluating bo. 

As with Renyi's function, the coefficients for successive intervals of Dickman's 
function were built up recursively, with care taken to provide over a thousand 
digits of accuracy. Dickman's function v(x) is displayed in Fig. lb. The function 
ln v(x)/x ln x is shown in Fig. le, and reveals that v(x) behaves asymptotically as 

ax 
x 

6. The U1 + U1U2 + U1U2U3 + F Function. Dickman's function arises in a 
completely different setting, with different initial conditions: as the density of the 
random variable X, defined by 

X = U1 + U1U2 + U1U2U3 +'', 
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where U1, U2, U3,... are independent random variables, each uniformly distributed 
on (0, 1). Let g(x) be the density of X. Since U1 (1 + X) has the same distribution 
as X, we may write, when x > 1, 

(10) Pr[X < x] = f Pr[Ul (1 + X) < x I X = t]g(t) dt 

(11) = f g(t) dt + 1 + t9(t) dt. 

Differentiation with respect to x gives the density function for X when x > 1: 
J00 g (t) 

g(x) = 
1i+tdt 

It follows that g(x) satisfies Dickman's differential-difference equation, xg'(x) = 

-g(x - 1), but with initial conditions yet to be determined. To establish the initial 
conditions, note that when 0 < x < 1, Eq. (11) reduces to 

g(x) = dx (X 1 + dt) = constant. 

To find that constant, g(0), we find the Laplace transform of g(x), say +(s), and 
use the relation g(O) = lim, >. sq(s). From the relation xg'(x) = -g(x - 1) it is 
elementary to derive a differential equation for 0(s), the Laplace transform of g(x): 

sq'(s) = (e-6 - 1)0(s) and thus +(s) = exp (- j 1 eY dy) 

(The additive constant in solving the differential equation is zero, since O(0) = 

f? g(x) dx = 1.) The exponent of e in ((s) may be integrated by parts to yield 
(1-e )ns-fO e aInydy, so that 

g(0) = lim sq(s) = exp (- e-8 lndy) = , 

with -Y = e-8 ln y dy, Euler's constant in one of its many manifestations. 
Since g(x) and Dickman's function v(x) differ only in that their initial values 

are, respectively, e-' and 1, values of g(x) may be obtained by g(x) = e-Yv(x). 

7. Buchstab's Function. The function defined by 

(12) w(x) = l/x for 1 < x < 2 and [xw(x)]' = w(x -1) for 2 < x 

was shown by Buchstab [3] and Selberg [17] to be the limiting form for the number 
of uncancelled elements in the sieve of Eratosthenes in particular cases. These 
results were extended by De Bruijn [2], who showed, among other things, that 
limx_oo w(x) = e-5. 

The series method is readily applied to w(x) and gives very accurate values over 
successive intervals 2 to 3, 3 to 4, etc. We have, for n = 0, 1, 2,... and 0 < t < 1, 

(t 
(n + l +t)w(n + l +t) = (n + 1)w(n + 1) + /w(n +y) dy, 
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and thus 

(2n+3+z)w (n+1+ + 2Z) 

= (2n + 2)w(n + 1) + w (n+ 2 + du. 

For given n, if 

( 
21\2 w t+ + 

Z)=aO+a1z+a2z +... 

and we want w for the next interval: 

w (n +1+ 2 + 2Z) bo +blz +b2Z + 

then we may substitute the a series for the integrand in (13), then integrate and 
equate coefficients of like powers of z to obtain 

bo = [ + [(2n + 2 + 1)ao + (2n + 2 - 1/2)al + (2n + 2 + 1/3)a2 + ], 
2n + 3 

bi = (ai-1/i-bi-,)/(2n + 3) for i = 1, 2,3,... 

Developing series for successive intervals in this way, we have used our extended 
precision routines on a PC AT to evaluate Buchstab's function out to x = 500. That 
function, w(x), is displayed in Figure lb. Like Renyi's function f(x), it oscillates 
as it approaches its limiting value, e-7, and the difference wA(x) = w(x) - e-7 
looks like a damped harmonic function. The function x"wA(x), with a selected 
to make the scale reasonable, is shown in Figure ld. The zero-counting function 
z(y) and the envelope w* (x) are defined as they were for Renyi's function. Figure 
lf is z(y) - 1.175y which shows that the zeros are almost evenly spaced with the 
spaces diminishing slowly as y increases. (We do not yet know whether the limiting 
spacing is zero or some positive constant.) A graph of ln w* (x)/x ln x in Figure le 
shows that the envelope also behaves asymptotically as xll, with the limiting value 
for alpha near 0.82. 

We found the published results of Lal and Gillard [11] to be accurate to the 
specified 25 places. As a check on our method of solving the equation, we compared 
the value at x = 500 with the known asymptotic value, e-7 and found agreement 
to at least 1000 digits. (Since -y is known to several thousand digits for example, 
Sweeney [18] it is relatively easy to find e-7 to 1000 digits.) 

8. Addendum. If h(t) = exp(-2 f 1-re dx), then Renyi's constant is c = 

fJ0 h(t)dt. We evaluated c with great accuracy above, as the limiting slope of the 
solution to Renyi's differential-difference equation. To confirm that accuracy, and 
to support our contention that published values of that constant, [4] and [10], are 
far off the mark, we now find c to 100 places by evaluating fJ0? h(t)dt directly. 

The method is as follows: 

c= h2 f231 (dh 
c=/ h(t) dt + /h(t) dt + + / h(t) dt+ h h(t) dt. 
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(The choice 231 comes from e-231 < 10o10o, used in bounding the tail integral.) 
Each of the integrals, fkk+1 h(t) dt, k = 0,1,2, ... ,230 may be evaluated with great 
accuracy by expanding h(t) in a Taylor series about t = k, leading to 

rk+1 r1 
1k+1 h(t) dt = f h(k + x) dx = h(k) + h'(k)/2! + h"(k)/3! + 

For a fixed k, define the derivatives ho = h(k) and hn = h(n)(t)It=k. The hn 
may be developed recursively: 

hn+1 -2Z ()I. gjhn-ji 

where g(t) = (1 - e-t)/t and gn g (n) (t)I t=k satisfies go = 1 and gn = (-ngn-1 - 

l)n-k).ei 
These recursions allow, for each k, successive derivatives of h to be built up as 

exact, rational multiples of h(k). This provides an alternating series for k+1 h(t) dt 
with error that may be controlled by the error in evaluating h(k) (essentially the 
exponential integral function, about which much is known), and the error from 
neglecting the tail of an alternating series. 

To evaluate h(k) with great accuracy, we write 

h(t) = exp (-2j 1 e dx) =e-2-2ln(t)+2Ei(t) 

and then use well-known methods for evaluating Ei(-k) = El (k) at the points 
k = 0,1, 2,..., 230. Our rational arithmetic procedures provided each of the Ei(-k) 
values with error less than 10-110. Then adding f1 + + + 231 provides 

fo31 h(t) dt with an error less than 10-104. 
Finally, we need the tail integral, f201 h(t) dt, with an error less than 10-101. 

We combine Eqs. 8.212(1) and 8.212(3) of [8, p. 925], to write 

t -edx =d + lnt + e-t/t-r(t), 

where 

r(t) =et (t+e-x dx. 
10(t + X)2 

Note that r(t) < e-t/t2 for t > 0, and that for t > 231, 

(14) 1 < e2r(t) < e2e-231/2312 < 1 + 1.8 x 10-105. 

We may write the tail integral in the form 

h(t) dt = e-27 t-2e2e-t/t+2r(t) dt. 
231 231 

With V = e-27 f0'1 t-2e2e-t/tdt, relation (14) provides the bounds 

V < h(t) dt < V + 1.8V x 10-iOS. 
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FIGURE 1 

Graphs of the Renyi, Dickman, and Buchstab functions 
(la,lb), with related functions (lc,ld,le,lf). 

Details are in the text. 

Thus if we find V to within 10-101 we will have the tail integral to the required 
100-place accuracy. 

To evaluate V, we expand e-2e /ti in a series to get 

V = e 
- 

1 t 
2 

t3 
2e 

24e - dt. 

Term-by-term integration yields an alternating series of decreasing magnitudes, so 
that the error in using only the first term, e-25/231, is less' than the second term, 
which is bounded by 2.44 x 10-108. 
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Thus we have a direct representation of Renyi's constant: 
r231 e-27i 

C= h(t)dt+ 231 

with jEt < 10-100. The value obtained by this method agrees with the 100-place 
value of c provided by our numerical solution of Renyi's equation, displayed in 
Section 4. 
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